KNN Model-Based Approach in Classification

نویسندگان

  • Gongde Guo
  • Hui Wang
  • David A. Bell
  • Yaxin Bi
  • Kieran Greer
چکیده

The k-Nearest-Neighbours (kNN) is a simple but effective method for classification. The major drawbacks with respect to kNN are (1) its low efficiency being a lazy learning method prohibits it in many applications such as dynamic web mining for a large repository, and (2) its dependency on the selection of a “good value” for k. In this paper, we propose a novel kNN type method for classification that is aimed at overcoming these shortcomings. Our method constructs a kNN model for the data, which replaces the data to serve as the basis of classification. The value of k is automatically determined, is varied for different data, and is optimal in terms of classification accuracy. The construction of the model reduces the dependency on k and makes classification faster. Experiments were carried out on some public datasets collected from the UCI machine learning repository in order to test our method. The experimental results show that the kNN based model compares well with C5.0 and kNN in terms of classification accuracy, but is more efficient than the standard kNN.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Scheme for Improving Accuracy of KNN Classification Algorithm Based on the New Weighting Technique and Stepwise Feature Selection

K nearest neighbor algorithm is one of the most frequently used techniques in data mining for its integrity and performance. Though the KNN algorithm is highly effective in many cases, it has some essential deficiencies, which affects the classification accuracy of the algorithm. First, the effectiveness of the algorithm is affected by redundant and irrelevant features. Furthermore, this algori...

متن کامل

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

An Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification

The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...

متن کامل

Diagnosis of Diabetes Using an Intelligent Approach Based on Bi-Level Dimensionality Reduction and Classification Algorithms

Objective: Diabetes is one of the most common metabolic diseases. Earlier diagnosis of diabetes and treatment of hyperglycemia and related metabolic abnormalities is of vital importance. Diagnosis of diabetes via proper interpretation of the diabetes data is an important classification problem. Classification systems help the clinicians to predict the risk factors that cause the diabetes or pre...

متن کامل

Breast Cancer Diagnosis from Perspective of Class Imbalance

Introduction: Breast cancer is the second cause of mortality among women. Early detection is the only rescue to reduce the risk of breast cancer mortality. Traditional methods cannot effectively diagnose tumor since they are based on the assumption of well-balanced dataset.. However, a hybrid method can help to alleviate the two-class imbalance problem existing in the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003